

Context

The remote sensing data offers a uniform measurement over a large area.

Remote sensing provides direct measurement of various geophysical properties, such as reflectance, emission and absorption of electro magnetic energy.

These geophysical properties are *partially* controlled by things of interest to epidemiologists, such as vegetation.

The actual remote sensing data can be used directly or

- It can be classified.
- It can be integrated into models.
- · It can be converted into products.

Dimensionality

The sensor measures multiple wavelengths at each pixel.

All energy within a pixel for a wavelength band pass is integrated to a single integer in the range 0 - 255 (2^8).

Each band is independent. The Thematic Mapper (TM) has 7 bands. For the TM a pixel is measured in 7 dimensions with a precision of 28 bits. In theory each pixel could have any one of (28)**7 values.

This is a very, very big number.

In practice the bands are correlated and all the available dynamic range is not used. Practically, each pixel has only one of $\sim (2^7)^{**4}$ possible values.

This is merely a very big number.

The Concept of Classification

Classification is a way to reduce the dimensionality and precision to something a human can understand.

Classification changes SCALAR data into NOMINAL data!

The names used come from a FEATURE SPACE. The names and the feature space are abstractions!

Conversion from scalar to nominal loses information and introduces error

Process Logic

Start with the scalar geophysical measurement

Classification creates a statistical connection between scalar data and a feature space

How strong is the relationship between the nominal designation (the class) and some "objective" standard?

Classification is NOT required

The
"I hope I am right"
option

Sources of Classification Error

Most classifications have average errors in the range of 25 - 40%.

Example:

"Forcing a square peg through a round hole."

Only two classes are permitted, plain (low number) or hashed (high number). So pixel (2,3) is what?

Example:

"Variables don't and constants aren't." The measurements always have "noise". Note the values in pixels (1,1), (1,2) and (2,1).

Doug Rickman MSFC/NASA HELIX-Israel April 2008 Note: there is a white rectangle used to clip the diagonal shading.

Example:

The raw satellite data are INTEGER.

Most logical algorithms assume REAL domain input.

This can cause some fascinating and entertaining problems.

Mathematical Logic Errors

Binning ALWAYS creates artifacts

What are the relationships between points C, D and E?

If the data are binned to the values i₂ and i₃ the true relationship are obscured AND spurious information has been added.

Actual function

Conclusion & Recommendation

In a review of publications applying remote sensing to epidemiology

- · most were found to use classification
- · none gave any information about the accuracy of the classification.

Therefore, their results

- · can only reveal how their health data related to their subset,
- they don't really know what that subset is,
- nor do they know if the subset can be reproduced!

It is strongly recommended that epidemiological studies utilize the full information content of the remote sensing material.

- This means using the full dimensionality or some statistically defensible expression of the total or a derived product.
- The computational burden, which 25 years ago was huge, is now easily handled by ordinary desktop systems.

Doug Rickman

Telephone - 256-961-7889 (United States)

Email

- Douglas L. Rickman@nasa.gov

Address - Earth Science Office / VP61

NSSTC/MSFC/NASA 320 Sparkman Drive

Huntsville, AL 35805 (USA)

Scientific Team Members at MSFC

Bill Crosson

Dale Quattrochi

Jeff Luvall

Maury Estes

Ashutosh Limaye

Maudood Khan

Illustrative Website

http://www.ghcc.msfc.nasa.gov/ follow Applications: Health and Environment link to http://weather.msfc.nasa.gov/helix/helix_home1.html

Current Significant Public Health Partners

Leslie McClure, University of Alabama, Birmingham Judith Qualters, Centers for Disease Control and Prevention Amanda Niskar, Tel Aviv University Bill Sprigg, University of Arizona

Stan Morain, University of New Mexico

Science and Mission Systems Office N

Home

Presentation Added to Database

Reports

Add the Following: Publication

Presentation Proposal

Award Patent

Committee Membership

Mission/Project Scientist

Contract/Grant

Monitor Training

Journal/Book

Journal Referee

Educational

Activity Technology

Utilization

Science Communication

Search the Following:

> Publication Presentation

Proposal Award Patent Committee Membership Mission/Project

Scientist Contract/Grant

Monitor Training

Journal/Book

Editor Journal Referee Proposal Reviewer

Educational Activity

Technology Utilization Science

Communication Use A Different Associates List

Submit Change Requests To

Presentation Added to Database

The accompanying publication metric for the conference proceedings has aut

Instructions:

Printer Friendly Version 1. Print this page.

2. Submit it, along with 3 copies of the abstract, to your MSA.

The following record has been added to the database:

Title:

Remote Sensing Information Classification D. L. Rickman

Presenters:

Conference Name:

HELIX-Israel Kick-Off Workshop Tel Aviv University, Tel Aviv, Israel

Proposal Reviewer Location:

Conference Start Date: 5/29/2008 5/29/2008

Conference End Date:

Conference Proceedings to Follow: Yes

Organization:

Home

Date Presented:

VP61

4/11/2008

Science and Mission Systems Office N

Home

Publication Details

Reports

Add the Following:

Title:

Authors:

Publication:

Refereed:

Publisher:

Publisher:

Volume:

Number:

Abstract:

Issue:

Page:

Date Published:

Date Submitted to

Date Accepted by

Publication Presentation

Proposal Award

Patent Committee

Membership Mission/Project

Scientist

Contract/Grant Monitor

Training Journal/Book

Editor Journal Referee Proposal Reviewer

Educational

Activity Technology

Utilization

Science

Communication

Search the Following:

Publication

Presentation Proposal

Award Patent

Committee Membership Mission/Project

Scientist

Contract/Grant

Monitor Training

Journal/Book Editor Journal Referee

Proposal Reviewer

Educational Activity

Technology Utilization Science

Communication

Use A Different Associates List

Submit Change Requests To

Remote Sensing Information Classification

D. L. Rickman

Proceedings of HELIX-Israel Kick-Off Workshop,

Israel, 5/29/2008-5/29/2008

See Attached.

Conference Proceedings

MSFC Sponsoring VP61

Organization: Status:

Document Type:

Last Modified By:

Last Modified:

Edit This Metric

Waiting for clearance

Rene Holden

4/11/2008 5:16:31 PM

Printer Friendly Report Back

Home